Determine whether the graph will open up or down, find the coordinate of the vertex, find the line of symmetry, find the x-intercepts and graph each of the following.

1. \(f(x) = x^2 + 8x + 15 \)
 - Opens:
 - Vertex:
 - Axis of Sym:
 - X-Int:

2. \(f(x) = -x^2 - 2x + 8 \)
 - Opens:
 - Vertex:
 - Axis of Sym:
 - X-Int:

3. \(f(x) = -x^2 + 4x - 5 \)
 - Opens:
 - Vertex:
 - Axis of Sym:
 - X-Int:

4. \(f(x) = x^2 - 4x + 4 \)
 - Opens:
 - Vertex:
 - Axis of Sym:
 - X-Int:
5. \(f(x) = x^2 + 2 \)
 Opens:
 Vertex:
 Axis of Sym:
 X-Int:

6. \(f(x) = -x^2 + 5 \)
 Opens:
 Vertex:
 Axis of Sym:
 X-Int:

7. \(f(x) = x^2 + 6x \)
 Opens:
 Vertex:
 Axis of Sym:
 X-Int:

8. \(f(x) = x^2 - 6x + 4 \)
 Opens:
 Vertex:
 Axis of Sym:
 X-Int:
9. \(f(x) = -2x^2 + 4x - 5 \)

Opens:

Vertex:

Axis of Sym:

X-Int:

10. (Problem 31 from section 10.6): A charter flight charges a fare of $200 per person plus $4 per person for each unsold seat on the plane. If the plane holds 100 passengers and if \(x \) represents the number of unsold seats, find the following.

 a. A function defined by \(R(x) \) that describes the total revenue received for the flight (Hint: multiply the number of people flying, \(100-x \), by the price per ticket, \(200+4x \))

 b. The number of unsold seats that will produce the maximum revenue

 c. The maximum revenue.
11. Joe owns a hot dog stand. He has found that his profit can be represented by the equation \(P(x) = -x^2 + 78x + 80 \) where \(P \) represents his profit and \(x \) represents the number of hot dogs sold.

 d. How many hot dogs must he sell to earn the most profit?

 e. What is his maximum profit?