Math 35: Chapter 10 Review

1. Solve each equation:
 a. \(x^2 = 81 \)
 \[x = \pm 9 \]
 b. \(x^2 = 54 \)
 \[x = \pm 3\sqrt{6} \]
 c. \(2x^2 - 20 = 12 \)
 \[x = \pm 4 \]
 d. \(3x^2 + 48 = 0 \)
 \[x = \pm 4i \]
 e. \((x - 3)^2 = 24 \)
 \[x - 3 = \pm 2\sqrt{6} \]
 \[x = 3 \pm 2\sqrt{6} \]
 f. \(\sqrt{(3x + 1)^2} = 25 \)
 \[3x + 1 = \pm 5 \]
 \[x = -2, \frac{4}{3} \]

2. Solve using completing the square:
 a. \(x^2 - 7x + 12 = 0 \)
 \[x = \frac{7 + \sqrt{49 - 48}}{2} \]
 \[x = \frac{7 + \sqrt{1}}{2} \]
 \[x = \frac{7}{2} \]
 b. \(x^2 + 2x - 5 = 0 \)
 \[x = \frac{-2 \pm \sqrt{4 + 20}}{2} \]
 \[x = -1 \pm \sqrt{6} \]
 c. \(x^2 - 2x + 10 = 0 \)
 \[x = \frac{2 \pm \sqrt{4 - 4 \cdot 10}}{2} \]
 \[x = 1 \pm 3i \]

3. State the quadratic formula:
 \[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

4. Determine if the quadratic equation has 1) Two real solutions, 2) One real solution, or 3) No real solutions. (Hint: use the discriminant)
 a. \(2x^2 - 5x - 7 = 0 \)
 \[b^2 - 4ac = 25 - 4 \cdot 2 \cdot (-7) \]
 \[= 81 \]
 \[Two \ Real \ Solutions \]
 b. \(3x^2 + 2x = -4 \)
 \[b^2 - 4ac = 4 - 4 \cdot 3 \cdot (-4) \]
 \[= 48 \]
 \[No \ Real \ Solutions \]
 c. \(x^2 + 12x + 36 = 0 \)
 \[b^2 - 4ac = 144 - 4 \cdot 1 \cdot 36 \]
 \[= 0 \]
 \[One \ Real \ Solution \]

5. Solve each using the quadratic formula:
 a. \(3x^2 + 7x = 0 \)
 \[a = 3 \]
 \[b = 7 \]
 \[c = 0 \]
 \[x = \frac{-7 \pm \sqrt{49 - 4 \cdot 3 \cdot 0}}{6} \]
 \[= -\frac{7}{3} \]
 b. \(x^2 - 11x = -30 \)
 \[a = 1 \]
 \[b = -11 \]
 \[c = 30 \]
 \[x = \frac{11 \pm \sqrt{121 - 4 \cdot 1 \cdot 30}}{2} \]
 \[= \frac{11 \pm \sqrt{1}}{2} \]
 \[= \frac{11 \pm 1}{2} \]
 \[= 0, 5 \]
 c. \(6a^2 + a - 15 = 0 \)
 \[a = 14 \]
 \[b = 1 \]
 \[c = -15 \]
 \[x = \frac{-1 \pm \sqrt{1 + 4 \cdot 14 \cdot (-15)}}{28} \]
 \[= \frac{-1 \pm 19}{14} \]
 \[= -\frac{19}{14}, -\frac{1}{2} \]
d. \(x^2 - 6x + 7 = 0 \)
\[
\alpha = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{6 \pm \sqrt{36 - 4(1)(7)}}{2} \\
\alpha = \frac{6 \pm \sqrt{36 - 28}}{2} \\
\alpha = \frac{6 \pm \sqrt{8}}{2} \quad x = 3 \pm \sqrt{2}
\]

6. Solve each equation:

a. \(x = \sqrt{4x + 60} \)
\[
x^2 = 4x + 60 \\
x^2 - 4x - 60 = 0 \\
(x - 10)(x + 6) = 0 \\
x = 10, -6
\]

b. \(\sqrt{x^2 + 2x - 4} = x \)
\[
x^2 + 2x - 4 = x^2 \\
2x - 4 = 0 \\
x = 2
\]

c. \(\sqrt{x^2 - x - 12} = x + 3 \)
\[
x^2 - x - 12 = x^2 + 6x + 9 \\
-7x = 21 \\
x = -3
\]

e. \(x^4 - 13x^2 + 36 = 0 \)
\[
x^2 = 9 \text{ or } x^2 = 4 \\
x = \pm 3, \pm 2
\]

f. \(4m^4 - 5m^2 + 1 = 0 \)
\[
Let \ u = m^2 \\
4u^2 - 5u + 1 = 0 \\
(u - \frac{1}{4})(u - 1) = 0 \\
m = \frac{1}{4}, 1
\]

g. \((x^2 - 1)^2 - (x^2 - 1) - 6 = 0 \)
\[
Let \ u = x^2 \\
u^2 - u - 4 = 0 \\
(u - 4)(u + 1) = 0 \\
x = \pm 4, -1
\]

7. Determine each of the following questions: 1) Does the parabola open up or down? 2) Find the Vertex of the parabola, 3) State the axis of symmetry, 4) Find the x-intercept, 5) Find the y-intercept and 6) Graph the parabola.

a. \(f(x) = x^2 + 5x \)
\[
\text{Vertex: } (-\frac{5}{2}, -\frac{25}{4}) \\
\text{Axis of Symm: } x = -\frac{5}{2} \\
\text{Opens up} \\
\text{X-int: } (0, 0), (-5, 0) \\
\text{Y-int: } (0, 0)
\]

d. \(h(x) = (x - 3)^2 + 4 \)
\[
\text{Vertex: } (3, 4) \\
\text{Axis of Sym: } x = 3 \\
\text{Opens up} \\
\text{X-int: None} \\
\text{Y-int: } (0, 13)
\]

b. \(f(x) = x^2 - 2x - 8 \)
\[
\text{Vertex: } (-1, 9) \\
\text{Axis of Sym: } x = -1 \\
\text{Opens up} \\
\text{X-int: } (-2, 0), (4, 0) \\
\text{Y-int: } (0, -8)
\]

e. \(h(x) = -(x + 2)^2 - 3 \)
\[
\text{Vertex: } (-2, -3) \\
\text{Axis of Sym: } x = -2 \\
\text{Opens down} \\
\text{X-int: None} \\
\text{Y-int: } (0, -7)
\]

f. \(m(x) = 4(x + 4)^2 - 1 \)
\[
\text{Vertex: } (-4, -1) \\
\text{Axis of Sym: } x = -4 \\
\text{Opens up} \\
\text{X-int: } (3, 5, 0), (4, 5, 0)
\]
8. The Norco Choir is having a performance. They have estimated the income for the spring performance to be estimated by the following function

\[I(x) = -x^2 + 22x - 30 \]

where \(x \) is the price of each ticket and \(I \) represents the income. In hundreds of dollars.

a. How much should they charge for each ticket to maximize their income?

\[
\frac{-b}{2a} = \frac{-22}{2(-1)} = \frac{-22}{-2} = 11
\]

b. What is the maximum income?

\[I(11) = 9100 \]

9. Josh tosses a ball upward from the top of a 60 foot building. The height, \(H(t) \), of the ball at any time \(t \) can be determined by the functions

\[H(t) = -16t^2 + 88t + 60 \]

a. At what time will the ball attain its maximum height?

\[
\frac{-b}{2a} = \frac{-88}{2(-16)} = \frac{-88}{-32} = 2.75 \text{ seconds}
\]

c. What is the maximum height?

\[181 \text{ feet} \]

10. Solve each inequality:

a. \((x - 3)(x + 4) > 0\)

b. \(x^2 - 11x + 30 \geq 0\)

c. \(x^2 + x \leq -12\)

d. \((x - 6)(x + 2)(x - 1) > 0\)